Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Neurotoxicology ; 96: 140-153, 2023 05.
Article En | MEDLINE | ID: mdl-37059311

Methylmercury (MeHg) is a concerning contaminant due to its ubiquity and harmful effects on organisms. Although birds are important models in the neurobiology of vocal learning and adult neuroplasticity, the neurotoxic effects of MeHg are less understood in birds than mammals. We surveyed the literature on MeHg effects on biochemical changes in the avian brain. Publication rates of papers related to neurology and/or birds and/or MeHg increased with time and can be linked with historical events, regulations, and increased understanding of MeHg cycling in the environment. However, publications on MeHg effects on the avian brain remain relatively low across time. The neural effects measured to evaluate MeHg neurotoxicity in birds changed with time and researcher interest. The measures most consistently affected by MeHg exposure in birds were markers of oxidative stress. NMDA, acetylcholinesterase, and Purkinje cells also seem sensitive to some extent. MeHg exposure has the potential to affect most neurotransmitter systems but more studies are needed for validation in birds. We also review the main mechanisms of MeHg-induced neurotoxicity in mammals and compare it to what is known in birds. The literature on MeHg effects on the avian brain is limited, preventing full construction of an adverse outcome pathway. We identify research gaps for taxonomic groups such as songbirds, and age- and life-stage groups such as immature fledgling stage and adult non-reproductive life stage. In addition, results are often inconsistent between experimental and field studies. We conclude that future neurotoxicological studies of MeHg impacts on birds need to better connect the numerous aspects of exposure from molecular physiological effects to behavioural outcomes that would be ecologically or biologically relevant for birds, especially under challenging conditions.


Methylmercury Compounds , Neurotoxicity Syndromes , Animals , Methylmercury Compounds/pharmacology , Acetylcholinesterase/metabolism , Brain , Oxidative Stress , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Birds/metabolism , Mammals/metabolism
2.
Horm Behav ; 146: 105261, 2022 11.
Article En | MEDLINE | ID: mdl-36126358

Avian migration is a challenging life stage susceptible to the adverse effects of stressors, including contaminants like methylmercury (MeHg). Although birds often experience stressors and contaminants concurrently in the wild, no study to date has investigated how simultaneous exposure to MeHg and food stress affects migratory behavior. Our objectives were to determine if MeHg or food stress exposure during summer, alone or combined, has carry-over effects on autumn migratory activity, and if hormone levels (corticosterone, thyroxine) and body condition were related to these effects. We tested how exposure to dietary MeHg and/or food stress (unpredictable temporary food removal) affected migratory behavior in captive song sparrows, Melospiza melodia. Nocturnal activity was influenced by a 3-way interaction between MeHg × stress × nights of the study, indicating that activity changed over time in different ways depending on prior treatments. Thyroxine was not affected by treatment or sampling date. During the migratory season, fecal corticosterone metabolite concentrations increased in birds co-exposed to MeHg and food stress compared to controls, suggesting an additive carry-over effect. As well, during the period of behavioral recording, body condition increased with time in unstressed birds, but not in stressed birds. Fecal corticosterone metabolite concentrations were positively correlated to duration of nocturnal activity, but thyroxine levels and body condition were not. The differences in nocturnal activity between groups suggest that food stress and MeHg exposure on breeding grounds could have direct and indirect carry-over effects that have the potential to affect the fall migration journey.


Methylmercury Compounds , Sparrows , Animals , Corticosterone , Seasons
3.
Sci Total Environ ; 775: 145739, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-33621875

Methylmercury (MeHg) is a globally distributed pollutant that can negatively affect wildlife. Bird feathers are often used as a monitoring tool of contaminant exposure, but variability in total mercury (THg) content in flight feathers has raised concerns over their utility. The objective of this study was to quantify blood and feather THg depuration through the progression of primary feather molt in order to clarify the relationship between blood and feather mercury concentration, and test the reliability of feather THg measurements as a monitoring tool in wild songbirds. Song sparrows (Melospiza melodia) were experimentally exposed to dietary MeHg and their blood and primary feather THg concentrations were measured during exposure and post-exposure periods of three months each. A rapid decrease in feather and blood THg concentration through molt progression was observed. Primary feather THg content was higher in feathers grown during the MeHg exposure period compared to those grown during the post-exposure period. Primary feather THg concentration was highly correlated with blood THg measured at the time of feather growth (R = 0.98), indicating that, although THg concentration is variable among flight feathers, this reflects temporally sequential molting patterns and declining blood concentration during depuration. Primary flight feathers thus provide an accurate and useful tool for estimating the mercury burden of birds at the time a chosen feather was grown, and have the potential to be an effective and reliable biomonitoring tool for species with well-characterized molt patterns.


Mercury , Songbirds , Animals , Environmental Monitoring , Feathers/chemistry , Mercury/analysis , Reproducibility of Results
...